Method for Training a Spiking Neuron to Associate Input-Output Spike Trains
نویسندگان
چکیده
We propose a novel supervised learning rule allowing the training of a precise input-output behavior to a spiking neuron. A single neuron can be trained to associate (map) different output spike trains to different multiple input spike trains. Spike trains are transformed into continuous functions through appropriate kernels and then Delta rule is applied. The main advantage of the method is its algorithmic simplicity promoting its straightforward application to building spiking neural networks (SNN) for engineering problems. We experimentally demonstrate on a synthetic benchmark problem the suitability of the method for spatio-temporal classification. The obtained results show promising efficiency and precision of the proposed method.
منابع مشابه
Training spiking neural networks to associate spatio-temporal input-output spike patterns
In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) [1] we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the applicati...
متن کاملWhat Can a Neuron Learn with Spike-Timing-Dependent Plasticity?
Spiking neurons are very flexible computational modules, which can implement with different values of their adjustable synaptic parameters an enormous variety of different transformations F from input spike trains to output spike trains. We examine in this letter the question to what extent a spiking neuron with biologically realistic models for dynamic synapses can be taught via spike-timing-d...
متن کاملInformation transmission with spiking Bayesian neurons
Spike trains of cortical neurons resulting from repeated presentations of a stimulus are variable and exhibit Poisson-like statistics. Many models of neural coding therefore assumed that sensory information is contained in instantaneous firing rates, not spike times. Here, we ask how much information about time-varying stimuli can be transmitted by spiking neurons with such input and output var...
متن کاملSpan: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns
Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike train...
متن کاملA Novel Kernel for Learning a Neuron Model from Spike Train Data
From a functional viewpoint, a spiking neuron is a device that transforms input spike trains on its various synapses into an output spike train on its axon. We demonstrate in this paper that the function mapping underlying the device can be tractably learned based on input and output spike train data alone. We begin by posing the problem in a classification based framework. We then derive a nov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011